Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
نویسندگان
چکیده
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCAis investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA. Keywords—Biometrics, finger vein recognition, Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA).
منابع مشابه
A New Extension of Kernel Principal Component Analysis for Finger Vein Authentication
In this paper, we introduce a new method of data transformation for finger vein recognition system. Our proposed method uses kernel mapping functions to map the data before performing Principal Component Analysis. Kernel Principal Component Analysis (KPCA) is a well-known extension of PCA which is suitable for finding nonlinear patterns as it maps the data nonlinearly. In this work we develop a...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملKernel-based Fuzzy Feature Extraction Method and Its Application to Face Image Classification
The Hughes phenomenon (or the curse of dimensionality) shows two essential directions for improving the classification performance on high-dimensional and small sample size (SSS) problems. One is to reduce the dimensionality of applied data by feature extraction or feature selection methods. The other is to increase the training sample size. In recent years some kernel-based feature extraction ...
متن کاملSupervised Kernel Locally Principle Component Analysis for Face Recognition
In this paper, a novel algorithm for feature extraction, named supervised kernel locally principle component analysis (SKLPCA), is proposed. The SKLPCA is a non-linear and supervised subspace learning method, which maps the data into a potentially much higher dimension feature space by kernel trick and preserves the geometric structure of data according to prior class-label information. SKLPCA ...
متن کاملFace Detection Technique by Gabor Feature and Kernel Principal Component Extraction Using K-NN Classifier with Varying Distance
Face recognition is always a hot topic in research. In this paper, we represent a robust method of face recognition using gabor feature extraction, kernel PCA and K-NN classifier. Gabor features are calculated for each face images then it’s polynomial kernel function is calculated, it is directly applied to the K-NN classifier. The effectiveness of the proposed method is demonstrated by the exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014